

HOT BLAST STOVES AND CHOICE OF REFRACTORIES

Ing.Stanislav Dvořák Czech Republic

Hot Blast Stove (HBS)

- -regenerative heat exchanger to provide hot blast air to the blast furnace
- -high temperature of air remains one the most important parameter
- -development focused on longer lifetime, higher hot blast temperature, lower CAPEX/OPEX and CO emissions
- -campaing life is 20+ years
- -blast air temperature is 1250-1300°C

On-Gas Cycle

Close Blowoff Valve Open Chimney Valves Open Air Valve Open Gas Valve Checkers heat up Heat until max temp in Dome and **Grid reached Close Gas Valve Close Air Valve Close Chimney Valves Open Blowoff Valve**

CHIMNEY OPEN

CB CLOSED

Valve Open with all others closed = "BOTTLED"

On-Blast Cycle

Close Blowoff Valve Open Fill Valve Wait until stove is pressurized **Open Hot Blast Valve Open Cold Blast Valve Checkers cool down** Hold on blast until Hot Blast temp starts dropping **HB OPEN** Bring next stove on blast **Close Cold Blast Close Hot Blast** AIR CLOSED **Open Blowoff Valve** GAS CLOSED

Design of HBS

-HBS consists of tall, cylindrical steel structure

-3 main parts

combustion chamber with burner

the dome

chamber with checker-work
-constructed from refractory materials
-variety of design developed by Hoogovens, VAI,Krupp Koppers, Didier and Kalugin
-internal,external and dome combustion stoves

Internal Combustion Shaft

Stove with refractory supported dome

stove with shell supported "mushroom" dome

Internal Combustion Chamber

-main feature of both design is division wall between combustion and checker chamber, which is exposed high heat impact from burner flame

-lower part of division wall facing checker chamber is located in the coldest part of the stove-banana effect

-division wall is constructed with 3 layers utilizing tongue and groove design on radial face

-vertical sliding joints allow free vertical expansion of each individual layer

-in the lower part an additional wall of insulation is used

Internal Combustion Chamber

Forces in Combustion Chamber of Stove with External Combustion Chamber

Forces in Combustion Chamber of Stove with Internal Combustion Chamber

External Combustion Chamber

-separation of combustion chamber from checker chamber
-way of compensation of the different thermal and pressure related expansion
-one dome design to connect combustion and checker chamber
-more reliable structure, higher costs

-installed in large capacity blast furnace

Top Fired Stove

-invented in Western Europe, promoted by russian company Kalugin -short circuiting and pulsation burning is eliminated -hot gas ditribution along the checkers is quite even -smaller dimensions for the same performance, 30-40% less refractories -complicated burner design, bricks failure can block the checker work

Checker Bricks

-made of fireclay, silica, HA
-basic characteristic is heatexchanging surface per volume
-smaller openings and decrease
the wall thickness between the
openings

-wall thickness closely to 10 mm -modification of the openings shape-contributing the turbulences of gases

Checker Bricks

- Hexagonal Flues give 15% more surface area than a circle.
- Flues are tapered to prevent laminar boundary layer from developing.
- Grooves are on top to provide flat surface to measure level of course.

Checker Brickworks

-interlacing placement-relaying of the previous layer brick to brick -spread of pressure to the individual bricks is by far well-proportioned

High-temperature Creep

- -the most serious failures of stoves are connected to the deformation and even total collapse of checker bricks
- Primary causes are all the time:
- -wrong assessment of temperature along the checkers height
 -wrong definition of temperature area for safety operation
 -wrong choice of refractory materials for checkers
- -it is important to know the essential material properties, especially resistance against creep deformation.
- -creep test-performed usually with time period 25-50 hours at the test temperature and under load (e.g.0,2 MPa)
- -method for guess of safety temperature with respect to usage of refractory materials have been worked out

Refractory Materials Selection

- -choice between silica and high alumina-HA -number of qualities for HA,but only limited number can be considered for stove linings
- -quartz-free type silica should be applied
- -used in combustion shaft, dome and upper part of checker brickwork
- -high resistance to creep in heat and under load
- -lower thermal capacity-lower bulk density
- -400° C is bottom temperature line for safe use of silica with usual characteristics

Thermal Expansion of Silica

Refractory Materials Selection

- -choice between silica and high alumina-HA -number of qualities for HA,but only limited number can be considered for stove linings
- -quartz-free type silica should be applied
- -used in combustion shaft, dome and upper part of checker brickwork
- -high resistance to creep in heat and under load
- -lower thermal capacity-lower bulk density
- -400° C is bottom temperature line for safe use of silica with usual characteristics

The Ceramic Burner

- -stoves and burners are becoming larger and larger
- -crown of burner is exposed to repeated temperature changes-extreme thermal shock resistence
- -bricks on andalusite basis with high thermal shock and CO resistence
- -lower part of the combustion shafttemperature changes and huge load of the complete shaft brickwork height

Conclusion

- -analysis of property changes of refractory materials became usual aspect
- -together with its results the experiences with the previous stoves operation served to the futher improvements
- -failure-free operation for 20 or more years justifies the previous measures in sufficient way
- -precise determination of temperature spread and fluctuation along the HBS height and refractory materials with high creep and thermal shock resistance enable to achieve a lifetime of two blast furnace generations

HOT BLAST STOVES AND CHOICE OF REFRACTORIES Thank you for your attention

Ing.Stanislav Dvořák Czech Republic