

Investigation of Refractory Bricks and Oxide Materials Heated in Hydrogen Reduction Condition

Sang-Bae Choi*, Rae-Hyeong Park, Young-hyuk Kim, Kee-Deok Yang Chosun Refractories Co., Ltd., Republic of Korea

Sang-Chae Jeon, Eun-Hee Kim, Jong-Won Woo, Sung-Hyun Kim, Jong-Won Kim School of Materials Science and Engineering, Changwon National University, Republic of Korea

Table of Contents

- 1. INTRODUCTION
- 2. EXPERIMENT
- 3. RESULT AND DISCUSSION
- 4. CONCLUSION

1 // INTRODUCTION

- In order to achieve carbon neutrality, a lot of researches have been conducted to convert the iron ore reduction matter from cokes to hydrogen gas.
- Accordingly, refractory makers need to identify the reaction of hydrogen g
 as with refractories .
- We investigated phase changes, weight changes, color changes, and physic al properties changes of refractory bricks when they are exposed to a hydr ogen atmosphere at 1,100°C.
- And we also found out components of the raw material which cause these
 s changes of refractories

Fig. 1. fluidized hydrogen reduction reactor

1 // INTRODUCTION

Prediction of thermodynamic reactions in a hydrogen atmosphere

Fig. 2. Ellingham diagram

- Na2O, K2O, Fe2O3 and P2O5 are reduced by hydrogen at 1100°C among oxide materials,
- However, silica, alumina, magnesia, calcia and zircona which are the main raw materials for refractories do not be reduced by hydrogen.

1 // INTRODUCTION

♦ The risk of hydration of raw materials in a H₂ atmosphere

Fig.3. (a)Production of H2O by Fe2O3 reduction with hydrogen

(b) Predicted temperature of MgO hydrated by H₂O(g)

- When Fe_2O_3 is reduced by H_2 gas, The H_2O will be generated as a by-product.
- Even though MgO doesn't react with H₂(g), If H₂O came out there would be a risk of MgO slaking in the reduction furnace.
 - Fig.3. (b) shows that the hydration of MgO can occur below 280 °C with H₂O gaseous state

2 // EXPERIMENT

Preparation of specimen

1. Alumina silica brick for the reaction test with H₂

Fig.4. Alumina silica brick

Raw material (particle size, mm)	Composition (wt%)
Andalusite (1~0.3)	30
Mullite chamotte (3~0.3)	60
Clay (1~0)	10
TOTAL	100

Tab.1. The raw materials & composition of brick

A refractory brick is composed of andalusite, mullite chamotte, and clay as raw materials. These raw materials were kneaded with binder in a mixer and the mixture was molded with a uniaxial pressing p ress, dried at 110°C for 24 hours, and heated at 1,350°C for 6 hours in the air.

2. MgO brick for the MgO hydration test by H₂O

The MgO brick is manufactured with only MgO raw materials.

And it is produced by the same way of the alumina silica brick.

2 // EXPERIMENT

Heat treatment conditions for a hydrogen reduction test

	J	,	MgO					
Specimen	В	С	C D E					
		Fired at 1350°C*6hrs (Air atmosphere)						
Temp*tim	е		at 1100°	C*72hrs		at 400°C *72hrs		
Atmosphe	re	Air		H ₂				
Gas ratio (Vol %)		100	25:75	75:25	100:0	100		

Fig. 5. Heat treatment equipment

Tab.2. The heat treatment conditions of the specimen

The specimen bricks are charged into an alumina tube furnace which is capable of controlling the atmosphere.

- Al_2O_3 -SiO₂ bricks("B"~"E") are heated at 1100°C for 72 hours while injecting air, hydrogen and argon gas with a flow rate of 200cc/min. The heating rate is 5°C/min, and the pressure in the furnace is 1 bar.
- The MgO brick is heated at 400 °C for 72 hours while injecting hydrogen gas

3 // RESULT AND DISCUSSION (Al₂O₃-SiO₂ bricks)

Color changes of refractory bricks in a hydrogen atmosphere

		F	Reversible reactio	n-	
	V _ Q	← Air		$H_2 \rightarrow$	
Specimen	Α	В	С	D	E
Atmosphere	-	Air		H ₂ : Ar	
Gas ratio(%)	-	100	25:75	75:25	100
Picture					

After heated in a hydrogen atmosphere, the color of brick is changed to dark.

After that , when it is heated once more in the air, the dark color is returned to bright color like specimen "A" This reversible phenomenon is considered that K_2O , Na_2O , and Fe_2O_3 , are reduced to metal having dark color in a hydrogen atmosphere and oxidized again in the air to be bright color oxides.

3 // RESULT AND DISCUSSION (Al₂O₃-SiO₂ bricks)

Strength(M.O.R) changes of bricks in hydrogen atmosphere

Fig. 6: Strength changes by heating atmosphere

- The strength of specimen "B" heat-treated in the air the strength is decreased slightly by 6% (1MPa), but the strength of specimen(C, D, E) heated in a H₂ atmosphere, are decreased by more than 15% (2MPa).
 This means that the strength of refractory is more vulnerable in a hydrogen atmosphere than in the air.
- The degree of strength changes at "C", "D", and "E" is almost same. It means that the strength is decreased by lack of oxygen not by hydrogen concentration.

3 // RESULT AND DISCUSSION (Al₂O₃-SiO₂ bricks)

Phase changes of bricks in hydrogen atmosphere

Fig. 7: XRD results by heating atmosphere

Tab.3. XRD results of refractory brick (main peak +++, traces +)

Specimen	A	В	C	D	E
		Air100	H ₂ :25	H ₂ :75	H ₂ :100
Mullite	+++	+++	+++	+++	+++
Andalusite	+++	+++	+++	++	+++
Cristobalite	++	++	++	++	++
Quartz	+	+	+	+	+
Fe ₂ O ₃	+	+			
Fe ₃ O ₄		+	+	+	+
Fe			+	+	+
Fe(OH)3		+	+	+	+

- The phase of Fe_2O_3 in the brick was reduced to Fe_3O_4 , Fe and $Fe(OH)_3$ phase after heat treatment.
- In particular, the metal Fe detected in specimens(C, D, E) could cause the specimen's color change after heat treatment in a H₂ atmosphere.

3 /// E

RESULT AND DISCUSSION (Al₂O₃-SiO₂ brick's raw materials)

Color changes of raw materials in hydrogen atmosphere

Tab.4. Raw materials composition of refractory brick

	Raw material	Composition (wt%)								
	(particle size, mm)	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	P ₂ O ₅	Na ₂ O	K ₂ O		
	(a) Mullite chamotte(3-1)	43.5	51.6	1.2	2.5	0.1	0.0	0.2		
	(b) Mullite chamotte(1)	43.9	50.8	1.4	2.5	0,1	0.0	0.2		
	(c) Mullite chamotte(0.3)	41.6	52.4	1.4	2.6	0.1	0.0	0.2		
	(d) Andalusite(1)	40.7	57.1	0.8	0.2	0.0	0.1	0.2		
•	(e) Andalusite(0.3)	39.3	58.3	0.9	0.2	0.0	0.0	0.3		
	(f) Clay (1)	51.2	33.1	1.2	0.8	0.1	0.0	0.1		

Fig. 8. Specimen before and after hydrogen heat treatment

- As shown in Figure 8, the color changes were seen in all specimens after heat treatment in a hydrogen atmosphere.

 The color changes are more noticeable in Mullite chamotte with smaller particle sizes (specimen "C").
- Referring to Table 4, we found out the fact that the higher Fe_2O_3 content caused the color to be the more dark.

(c) Mullite chamotte -0.3mm

3 // RESULT AND DISCUSSION (Al₂O₃-SiO₂ brick's raw materials)

Physical property changes of raw materials in a hydrogen atmosphere

Tab.5. Weight changes before and after heat treatment

Raw material	Weig	△g (%)	
(particle size, mm)	Before	After	∠G (70)
Mullite chamotte (1)	13.30	13.27	-0.22
Mullite chamotte (0.3)	9.76	9.73	-0.29
Andalusite (1)	13.65	13.62	-0.19
Andalusite (0.3)	8.77	8.75	-0.21
Clay (1)	6.97	6.97	-0.03

Tab.6. Strength changes before and after heat treatment

Raw material	M.O.R	△σ (%)	
(particle size, mm)	Before	After	△٥ (/0)
Mullite chamotte (1)	8.68	7.14	-18
Mullite chamotte (0.3)	34.63	23.87	-31
Andalusite (1)	5.50	4.38	-20
Andalusite (0.3)	8.40	8.25	-2
Clay (1)	26.27	36.68	40

- The weight loss was greater when the raw material's particle sizes were smaller.
- Table6 shows that the strength of mullite chamotte and andalusite was decreased .
- But In the case of clay, the strength is rather increased. that could be caused by the creation of mullite from clay components.

3 // R

RESULT AND DISCUSSION (Al₂O₃-SiO₂ brick's raw materials)

XPS(X ray Photoelectron Spectroscopy) of Fe peak in mullite chamotte

Fig. 9. XPS of Fe peak in mullite chamotte(0.3)

(a)Before hydrogen heat treatment (b)After hydrogen heat treatment

- Fig.9. shows XPS of Fe peak in mullite chamotte(-0.3mm) which contains 1.4wt% Fe_2O_3 as an impurity.
- After heat treatment, the peaks of Fe²⁺ are detected(blue & yellow line), and it shows that Fe₃O₄ is produced t hrough a reduction of the Fe₂O₃ in a H₂ atmosphere.

Color changes of silica in hydrogen atmosphere

Fig. 10. Specimen before and after hydrogen heat treatment

Tab.7. Composition and content of silica

Material	(Composit	ion (wt%)	Phase (%)			
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	LOI	Quartz	Cristo balite	Amor phous
Amorphous	99.90	0.04	0.01	0.00	-	46	54
α-Quartz	99.05	0.34	0.13	0.13	88	12	-

Fig. 11. XRD results before hydrogen heat treatment

After heat treatment in a hydrogen atmosphere, the color change is pronounced in α -Quartz specimen which has more Fe₂O₃ compound than amorphous specimen.

♦ Weight changes of silica in hydrogen atmosphere

Fig. 12. TGA results of Silica

- TGA results of silica shows that the weight is decreased to 0.8wt% of amorphous silica and 1.0 wt% of quart z by keeping in hydrogen atmosphere at 1100°C
- In both cases, the weight loss was greater than the amount of impurities (0.13 weight %).

 It means that the weight loss of silica is caused by the generation of SiO gas in a H₂ atmosphere.

Calculation of silica volatilization loss in a hydrogen atmosphere

Assuming an equilibrium state with the Gibbs free energy for the volatilization reaction of silica[1],

Tab.8. Reduction reaction equation of silica

$SiO_2(s) + H_2(g) \rightarrow SiO(g) + H_2O(g)$	(1) Direct reduction

$$SiO_2(s) \rightarrow SiO(g) + 1/2O_2(g)$$

(2) Indirect reduction

$$\Delta G = -RT \ln K_{eq} = -RT \ln \frac{[SiO][H_2O]}{[H_2]}$$

According to reaction (1), $\Delta G = -219.71 - 170.09 + 661.48 = 271.68$ (kJ/mo 1)

According to reaction (2), $\Delta G = -219.71 + 661.48 = 441.77$ (kJ/mol)

Tab.9. Calculation of silica volatilization loss

$SiO_2(s) + H_2(g) \rightarrow SiO(g) + H_2O(g)$				QV	Si	$iO_2(s) \rightarrow SiO(g$	$(g) + 1/2O_2(g)$				
	A C (I/m	-1)	(C/DT)	D*[H2] =	[G:O]=[H2O]	A C (I/m a 1)	over (C/DT)	[G:O][O]]\1/2	[02]	[02]\\\1/2	[6:0]
	△G (J/mol)		exp(-G/RT)	[SiO][H2O]	[SiO]=[H2O]	△G (J/mol)	exp(-G/RT)	[SiO][O2]^1/2	[O2]	[O2]^1/2	[SiO]
	Cristobalite	271,680	4.61E-11	4.61E-06	2.14E-03	441,150	1.65E-17	1.65E-17	2.52E-20	1.59E-10	1.04E-07

[R]: 8.314J/molK [H2]: 100000 [K]: 1373

- The effect of **direct reduction by hydrogen is greater** than that of indirect reduction in a low oxygen partial pr essure atmosphere.
- And, While the refractory is exposed to a hydrogen atmosphere at 1100°C. The deterioration of refractory will be accelerated by the volatilization of silica.

Microstructure changes of amorphous silica in a hydrogen atmosphere

Fig. 13. SEM image of amorphous silica after hydrogen heat treatment

Amorphous silica keep their smooth surface after heating in a hydrogen atmosphere at 1100 °C for 128 hours

Microstructure changes of crystalline silica in a hydrogen atmosphere

Fig. 14. SEM image of quartz after hydrogen heat treatment

- The quartz's original smooth surface turns into a rough surface after heating for more than 4 hours at 1100°
 C.
- These damage of quartz could reduce strength of refractory.

Color changes of MgO in a hydrogen atmosphere

(b) After

Composition	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	P ₂ O ₅
W/%	0.34	0.05	0.55	97.70	1.20	0.04

Table 10. Chemical composition of MgO brick

Fig. 15. Color of MgO specimens before and after heating at 400 °C in pure hydrogen atmosphere

- The color of the specimen is changed after heating, that means some reactions could occure even at 400 °C in a hydrogen atmosphere.
- Table 10 shows that MgO specimen has 0.55 weight % Fe₂O₃ which could be reduced by H₂ and produce H₂O in the specimen after heating.

3 // RESULT AND DISCUSSION

(MgO brick)

♦ Physical property changes after heating in a hydrogen atmosphere

Fig. 16. Modulus of rupture of MgO specimens

Specimen	Density	^ D (%)		
No.	Before	△D (%)		
1	2.63	2.60	-0.9	
2	2.62	2.61	-0.2	
3	2.60	2.59	-0.6	

Table 11. Density of MgO specimens

- The strength of the MgO specimen is decreased by 50% (~10 MPa) after heated in 100% hydrogen atmosphere.
- This strength reduction is due to the generation of $Mg(OH)_2$ by the hydration reaction of MgO with H_2O .

3 // RESULT AND DISCUSSION

(MgO brick)

XPS results for Fe element in MgO brick

$$3Fe_2O_3 + H_2(g) \rightarrow 2Fe_3O_4 + H_2O(g) --\Delta G^\circ = -52984 \text{J/mol ,at } 400^\circ \text{C}$$

♦ Generation of H₂O by Fe oxide in a H₂ atmosphere

$$3Fe_2O_3 + H_2(g) \rightarrow 2Fe_3O_4 + H_2O(g)$$
 --(1)

$$\Delta G^{\circ}$$
=-RTInK_{eq}=-RTIn(P_{H2O}/P_{H2})

ΔG°=2-0.0817T(kJ/mol)				
ΔG°	[H2]	Temp(K)	exp(-G/RT)	[H2O]
-52984J/mol	100000	673	1.29 x 104	1.29 x 109

$$MgO + H_2O(g) = Mg(OH)_2 --(2)$$

- MgO refractories can be hydrated and weakened by H₂O generated by the reduction of Fe₂O₃ to Fe₃O₄ at 400°C.
- Since Fe₂O₃ exists as an impurity in the refractory, it is necessary to select a refractory with less Fe₂O₃ impurity to suppress hydration of the refractory.

4 // CONCLUSION

- 1. The strength of refractory brick could be decreased by reduction of impurities such as Na_2O , K_2O , and Fe_2O_3 in a hydrogen atmosphere.
- 2. Refractory bricks show reversible color changes after heating in a hydrogen atmosphere. Fe_3O_4 and Fe, the reduction products of Fe_2O_3 , were observed as major color change factors.
- 3. The strength of refractory is more vulnerable in a hydrogen atmosphere than in the air.
- 4. Silica components are prone to damage due to the evaporation of SiO, which leads to the weakening of refractory bricks.
- 5. The volatilization loss of silica by direct reduction with hydrogen is greater than that of indirect reduction at low oxygen partial pressure.
- 6. In a fluidized reduction furnace, where temperatures can be down to 400 $^{\circ}$ C, there is a risk of slaking by hydration reactions in MgO materials. it is necessary to select a refractory with less Fe₂O₃ impurity to suppress hydration of the refractory.

// Acknowledgement

This work was supported by the Korea Planning & Evaluation Institute Of Industrial Technology (KEIT) and the Ministry of Trade, Industry & Energy (MOTIE, Korea) of the Republic of Korea(No.RS-2023-00262421).

Thank you for your attention

Sangbae, Choi

Research Group, Chosun Refractories Co., Ltd

Mail: sbchoi@chosunref.co.kr

